Introduction to Data Communications
Previous 42d. Router Addressing Next

42d. Router Addressing

Routers combine the Network Number and the Node Address to make Source and Destination addresses in routing Network Layer PDUs across an network. Routers have to know the name of the segment that they are on and the segment name or number where the PDU is going to. They also have to know the Node Address: MAC Address for Novell and the IP address for TCP/IP.

For Novell's SPX/IPX (Sequential Packet eXchange/Internetwork Packet eXchange), the Network Layer PDUs address is composed of the Network Address (32 bit number) and the Host address (48 bit - MAC address).


42e. Routing Protocols

Routing Protocols are a "sub-protocol" of the Network Layer Protocol that deal specifically with routing of packets from the source to the destination across an internetwork. Examples of Routing Protocols are: RIP, IGRP and OSPF.


42f. RIP - Routing Information Protocol

RIP was one of the first routing protocols to gain widespread acceptance. It is described in RFC1058 which is an Internet standard. RFC stands for request for comment and the RFC1058 is the 1,058 RFC standard published. Commercial NOS such as Novell, Apple, Banyan Vines and 3Com, use RIP as the base routing algorithm for their respective protocol suites.

RIP is a distance vector algorithm. Routers maintain a detailed view of locally attached network segments and a partial view of the remainder of the routing table. The routers contain information on the number of hop counts to each segment. A hop is considered to be one transverse through a router. Pass through a router and the Hop count increases by 1.

The routers are updated every 30 seconds, each router sending out a RIP broadcast. This advertisement process is what enables RIP routing to be dynamic. Dynamic routers can change routing tables on the fly as the network configuration changes. By using the Hop Count information from their routing tables, routers can select the shortest path - the least number of hops to the destination.

Apple uses RTMP (routing table maintenance protocol) which adds a route status indicator: good, bad or suspect depending on the age of the route information.

Novell adds ticks to the RIP algorithm, Ticks are dynamically assigned values that represent the delay associated with a given route. Each tick is considered 1/18 of a second.

LAN segments are typically assigned a value of 1 tick, a T1 link may have a value of 5 to 6 ticks and a 56 Kbps line may have a value of 20 ticks. Larger number of ticks indicate a slower routing path.

Three commonest problems that can occur with RIP are:

  1. Routing loops: the router indicates that the shortest path is back the way the packet came from.
  2. Slow Route Convergence: routers have delay timers that start counting after the RIP advertising packet is broadcasted. This gives the routers time to receive and formulate a proper routing table from the other routers. If the delay timer is too short, the routing table can be implemented with incomplete data causing routing loops
  3. Hop Count Exceeded: the maximum number of hop counts is 15 for RIP. A hop count of 15 is classified as unreachable which makes RIP unsuitable for large networks where hop counts of 15 and above are normal.


Introduction to Data Communications
Previous Table of Contents Next